Retrieval Models for Genre Classification

نویسندگان

  • Benno Stein
  • Sven Meyer zu Eissen
چکیده

Genre provides a characterization of a document with respect to its form or functional trait. Genre is orthogonal to topic, rendering genre information a powerful filter technology for information seekers in digital libraries. However, an efficient means for genre classification is an open and controversially discussed issue. This paper gives an overview and presents new results related to automatic genre classification of text documents. We present a comprehensive survey which contrasts the genre retrieval models that have been developed for Web and non-Web corpora. With the concept of genre-specific core vocabularies the paper provides an original contribution related to computational aspects and classification performance of genre retrieval models: we show how such vocabularies are acquired automatically and introduce new concentration measures that quantify the vocabulary distribution in a sensible way. Based on these findings we construct lightweight genre retrieval models and evaluate their discriminative power and computational efficiency. The presented concepts go beyond the existing utilization of vocabulary-centered, genre-revealing features and open new possibilities for the construction of genre classifiers that operate in real-time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Closer Look on Artist Filters for Musical Genre Classification

Musical genre classification is the automatic classification of audio signals into user defined labels describing pieces of music. A problem inherent to genre classification experiments in music information retrieval research is the use of songs from the same artist in both training and test sets. We show that this does not only lead to overoptimistic accuracy results but also selectively favou...

متن کامل

شناسایی خودکار سبک موسیقی

Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...

متن کامل

A Study on Music Genre Recognition and Classification Techniques

Automatic classification of music genre is widely studied topic in music information retrieval (MIR) as it is an efficient method to structure and organize the large numbers of music files available on the Internet. Generally, the genre classification process of music has two main steps: feature extraction and classification. The first step obtains audio signal information, while the second one...

متن کامل

Music Genre Classification using Machine Learning Techniques

Categorizing music files according to their genre is a challenging task in the area of music information retrieval (MIR). In this study, we compare the performance of two classes of models. The first is a deep learning approach wherein a CNN model is trained end-to-end, to predict the genre label of an audio signal, solely using its spectrogram. The second approach utilizes hand-crafted feature...

متن کامل

Genre classification using chords and stochastic language models

Music genre meta-data is of paramount importance for the organization of music repositories. People use genre in a natural way when entering a music store or looking into music collections. Automatic genre classification has become a popular topic in music information retrieval research both with digital audio and symbolic data. This work focuses on the symbolic approach, bringing to music cogn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scandinavian J. Inf. Systems

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2008